

nature outlook

24 March 2011 / Vol 471 / Issue No. 7339

Big science at the table

Phytochemicals and diet in health & disease: epigenetic friends or foe?

Sitges 2011

Wim Vanden Berghe

- Nutrition & cancer-inflammation: the good and the bad
- 2. Can anti-inflammatory effects of phytochemicals explain their potential anticancer effects?
- 3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects

1. Nutrition & cancer-inflammation: the bad news

Increased cancer risk in developed regions

Adults in North America, Alaska, Australia and parts of Europe have a higher risk of getting cancer before age 65.

1. Nutrition & cancer-inflammation: the bad news

Disease / condition	Influence of diet, %		
Cardiovascular	> 30		
Cancers	> 35		
Constipation	> 70		
Obesity	> 50		
Diabetes type 2	> 25		
Dental caries	> 30		

Table 1. Estimated influence of diet on specific diseases

1. Nutrition & cancer: the good news?

Differences in cancer incidence related to diet preference?

	USA		India		Japan	
Cancer	Cases	Deaths	Cases	Deaths	Cases	Death
Oral cavity	50	11	102	60	29	12
Nasopharynx	4	2	4	3	3	27
Other Pharynx	19	9	57	42	10	
Oesophagus	31	31	63	59	58	43
Stomach	56	34	43	39	489	225
Colon/Rectum	356	139	40	26	342	143
Liver	30	31	17	16	186	146
Pancreas	72	68	11	11	76	71
Larynx	33	11	35	22	17	5
Lung	463	402	55	51	262	214
Melanoma of skin	113	21	3	1	3	2
Breast	914	212	191	99	314	77
Cervix uteri	78	33	307	174	111	30
Corpus uteri	155	20	17	5	45	13
Vory etc.	106	62	49	29	66	37
Prostate	1043	179	46	28	111	55
Testis	40	2	6	3	13	2
Bladder	144	28	20	16	56	17
Kidney etc.	86	31	8	6	42	19
Brain, nervous system	54	37	21	16	24	9
Thyroid	46	3	14	4	31	5
Non-Hodgkin lymphoma	135	59	24	19	58	30
Hodgkin's disease	22	4	8	4	3	1
Multiple myeloma	35	26	8	6	16	12
Leukemia	80	54	26	20	48	34
All sites but skin	3223	1391	1017	688	2230	1213

Showing cases were after standardized with world standard population, called World Standardized incidence or mortality rate. It is also expressed per million. J. Ferlay, etal.GLOBOCAN 2000.URL: http://www-dep.larc.fr/globocan/globocan.htm

NFkB promotes 7 cancer hallmarks and its activity is increased in most tumors

Chronic inflammation promotes tumorinitiation-progression, angiogenesis and metastasis

Aggarwal, Curr Opin Pharmacol. 2009 Aug;9(4):347-50

Curr Opin Pharmacol. 2009 Aug;9(4):347-50

Hypothesis: Various dietary phytochemicals lower basal inflammatory state

GINKGO BILDE ECHINACEA

ST. JOHN'S WO

GINSENG

WLIMITED REFILLS

It's great business, but is

it good for what ails us?

Plant derived NFkB inhibitors attenuate cancer hallmarks in vitro in concentration range >10µM

Outline

- 1. Nutrition & cancer: the good and the bad
- 2. Can anti-inflammatory effects of phytochemicals explain their potential anti-cancer effects?

Problem: various anti-inflammatory mechanisms are demonstrated at supraphysiological concentrations >10µM

- 3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects
- 4. Conclusions

Outline

- 1. Nutrition & cancer: the good and the bad
- 2. Can anti-inflammatory effects of phytochemicals explain their potential anti-cancer effects?
- 3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects?

Epigenetics definition: Heritable changes in phenotype and/or gene expression that occur without a change in DNA sequence Heritable: transgenerational, mitotic stable, perpetuation of gene activity in absence of the original signal

An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation

Dimitrios Iliopoulos,¹ Heather A. Hirsch,¹ and Kevin Struhl^{1,*} ¹Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA *Correspondence: kevin@hms.harvard.edu DOI 10.1016/j.cell.2009.10.014 MicroRNA-Dependent Regulation of DNA Methyltransferase-1 and Tumor Suppressor Gene Expression by Interleukin-6 in Human Malignant Cholangiocytes

3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects Injury Neurotransmitters Environmental Stress stimuli Signaling Synaptic Metabolism activity Writer (Ac) HATs Writers PTMs (Me) HMTs Enzymatic Machinery P Kinases Reader Bromo Ac Chromo Readers PWW (Me) PHD KQTARKSTGGKAPRKQLATKAARKSAPATGGVKKP... ~ MB1 Tudor 14-3-3, BRCT P H3 Eraser (Ac) HDACs Erasers Me DMTs P Phosphatases A M 18 26 27 36 H3 H4 16 H2B H2A Acetylation 24

Methylation

Epigenetic dogma of cancer

Global hypomethylation

Figure 1. Epigenetic Alterations in Tumor Progression.

A multistage model of carcinogenesis in skin is shown. In conjunction with phenotypic cellular changes and the accumulation of genetic defects, there is a progressive loss of total DNA methylation content, an increased frequency of hypermethylated CpG islands, and an increased histone-modification imbalance in the development of the disease. *H-ras* denotes Harvey–ras oncogene, and SmC 5-methyl-cytosine.

Hypermethylation of tumor suppressor genes

Figure 2. DNA methylation pattern in normal and cancer cells. CpG islands are protected from methylation in normal cells. CpG sites away from transcription start sites and in repetitive elements are typically methylated. The situation gets reversed in cancer resulting in focal hypermethylation and global hypomethylation. CpG islands flanking start sites of some genes may become methylated. Intragenic CpG sites and repeats are become unmethylated. Green lollipops show unmethylated, red lollipops methylated CpG sites.

3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects - key experiments

DH

144116

Obesity, Cancer and

Heart Attacks: How Your Odds Are Set

Agouti model: R. Waterland and R. Jirtle Germ cells carry the epigenetic benefits of grandmother's diet

Craig A. Cooney* Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205

Maternal Supplements With Genistein Zinc methionine Betaine choline, Folate B₁₂

Lower risk of cancer, diabetes, obesity , CVD and prolonged life

Folate and B12 have transgenerational effect on decreased expression of the *agouti* gene

Rob Waterland and Randy Jirtle

Agouti mouse model : Soy diet induces transgenerational changes in DNA methylation which protect 2 unexposed generations to obesity & cancer

Half of your DNA has been exposed to the environmental conditions in the uterus of your maternal grandmother

3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects - key experiments

17 Timing of dietary exposure maybe critical to achieve chemopreventive effects

Figure 2 | Environmental sensitivity of the epigenome throughout life. The top row indicates normal reprogramming of the epigenome during gametogenesis, fertilization and development. The bottom row indicates the environmental cues that affect the epigenome and have late-life consequences, and the stages of life at which they act. Sensitivity of the epigenome to the environment (represented by shading of the arrow) is likely to decrease during life as growth slows. Abbreviation: IVF, *in vitro* fertilization.

3. Can epigenetic effects of phytochemicals explain their potential anti-cancer effects - key experiments

OPEN ORCESS Freely available online

Early Life Exposure to Famine and Colorectal Cancer Risk: A Role for Epigenetic Mechanisms

Laura A. E. Hughes¹, Piet A. van den Brandt¹, Adriaan P. de Bruïne², Kim A. D. Wouters², Sarah Hulsmans², Angela Spiertz³, R. Alexandra Goldbohm³, Anton F. P. M. de Goeij², James G. Herman⁴, Matty P. Weijenberg¹, Manon van Engeland²*

1 Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, 2 Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands, 3 Department of Prevention and Health, TNO Quality of Life, Leiden, The Netherlands, 4 Sidney Kimmel Comprehensive Cancer Center, John Hopkins University School of Medicine, Baltimore, Maryland, United States of America

Gluckman et al. Genome Medicine 2010, 2:14 http://genomemedicine.com/content/2/2/14

COMMENTARY

Developmental origins of health and disease: reducing the burden of chronic disease in the next generation

Peter D Gluckman^{1,2}, Mark A Hanson³ and Murray D Mitchell**

CHEMICAL	EPIGENETIC ROLE			
Methionine	Methylates DNA (gene silencing)			
Folic Acid	Methylates DNA (gene silencing)			
Folic Acid	Methylates DNA (gene silencing)			
Methionine	Methylates DNA (gene silencing)			
Methionine and Folic Acid	Methylates DNA (gene silencing)			
Sulphoraphane	Acetylates Histones (activating genes)			
Vitamin B6	Methylates DNA (gene silencing)			
Diallylsulphide (DADS)	Acetylates Histones (activating genes)			
Choline, Genistein	Methylates DNA (gene silencing)			
Vitamin B12	Methylates DNA (gene silencing)			
Folic Acid	Methylates DNA (gene silencing)			
Vitamin B6	Methylates DNA (gene silencing)			
Methionine	Methylates DNA (gene silencing)			
Vitamin B12	Methylates DNA (gene silencing)			
Vitamin B12	Methylates DNA (gene silencing)			
Choline	Methylates DNA (gene silencing)			
Choline	Methylates DNA (gene silencing)			
Folic Acid	Methylates DNA (gene silencing)			
Choline	Methylates DNA (gene silencing)			
	MethionineFolic AcidFolic AcidMethionineMethionine and Folic AcidSulphoraphaneVitamin B6Diallylsulphide (DADS)Choline, GenisteinVitamin B12Folic AcidVitamin B6MethionineVitamin B12Folic AcidVitamin B12Choline, GenisteinCholineMethionineVitamin B12Vitamin B12Folic AcidCholineCholineFolic Acid			

Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development

Dana C. Dolinoy*^{†‡}, Dale Huang*, and Randy L. Jirtle*^{†‡§}

*Department of Radiation Oncology and [‡]University Program in Genetics and Genomics, Duke University, Durham, NC 27710; and [†]Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708

Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved June 25, 2007 (received for review April 23, 2007)

Withaferin A inhibits inflammatory gene expression in MDA-MB231 breast cancer cells in [nM] range

Widespread etnopharmacological use of *Withania Somnifera / Ashwagandha* (Ayurvedic) extracts for cancer chemotherapy and anti-inflammatory use

Withaferin A blocks breast cancer metastasis in vivo in nM range

Thaiparambil et al. 2011, Int. J. Cancer, DOI: 10.1002/ijc.25938

Differential IL6 gene expression in weak versus strong metastatic breast cancer cell types

Phytochemical effects on histone modifier enzymes selectively affects specific NFKB target genes

Reverse oncogenic gene expression by increased DNA methylation via dietary compounds?

MBD2 seq based profiling of the cancer methylome/immune cell methylome

Principle MBD2 sequencing:

Relative methylation MDA/MCF7

Methylation changes WA/untreated

DNA methylation Signature is cell specific

Complexity of methylation dynamics

Dietary effects on methylation signature in breast cancer

DNA methylation profiling reveals a predominant immune component in breast cancers, Dedeurwaerder et al. In press 2011

Possible mechanisms of diet dependent DNA (de)methylation dynamics

Is epigenetic drift a consequence of aerobic life?

The Redox Basis of Epigenetic Modifications: From Mechanisms to Functional Consequences

2.8 6 7 8 Δ Sirtuin PARP Tet1 JmjC HDAC Methyltransferase Disruption Disruption Disruption Disruption Disruption Disruption SAM Metal Loading 12 Availability 15 Perturbation 9 Krebs Cvcle Disruption 10 Glutathione Iron-Sulfur 9 12 Synthesis Cluster Disruption 10 13 Labile Iron GSH / GSSG NAD+ / NADH 12 15 14 Dysregulation Ratio Ratio Oxidative Stress

Epigenetic Dysregulation

6

Epigenetics 6:7, 1-4; July, 2011; © 2011 Landes Bioscience

Anthony R. Cyr and Frederick E. Domann

Xenohormesis: interspecies epigenetic stress response

Xenohormesis: Sensing the Chemical Cues of Other Species

Konrad T. Howitz^{1,*} and David A. Sinclair^{2,*}

Cell 133, May 2, 2008 ©2008 Elsevier Inc.

Epigenetic reprogramming of the cancer-immunomethylome may contribute in chemopreventive effects of early life exposure to physiological concentrations of dietary phytochemicals

Future:

Study methylation dynamics (turnover) in function of age (pregnant, neonatal, puberty, old) or single/repeated exposure

Compare methylation dynamics following exposure to dietary polyphenols versus bisphenols: rationale for benefecial/detrimental effects in cancer?

Study crosstalk metabolic pathways vs. dynamics DNA methylation/hydroxymethylation, histone methylation

Acknowledgements

University Gent Matladi Ndlovu Mary Kaileh Karen Heyninck Linde Sabbe Prof. G. Haegeman University Gent - Biobix Wim Van Criekinge Tim Demeyer

University Antwerp

Ajay Palagani Katarzyna Szarc vel Szic

University Brussels ULB

Carine Van Lint Francois Fuks

University Montpellier Inserm U540 Dany Chalbos

Questions?

If they ask you anything you don't know, just just say it's due to epigenetics.